CLEO results on non- $D\bar{D}$ decays of $\psi(3770)$

Hajime Muramatsu

Department of Physics and Astronomy, University of Rochester, NY 14627-0171

Abstract. CLEO has recently measured the cross section for $e^+e^- \to \psi(3770) \to \text{hadrons}$ at $E_{\text{cm}} = 3773 \text{ MeV}$ to be $(6.38 \pm 0.08^{+0.41}_{-0.30})$ nb which is consistent with other observations of non- $D\bar{D}$ decays of $\psi(3770)$.

1. INTRODUCTION

It has been almost 30 years since the Lead-Glass Wall measured the inclusive cross sections of $D^0(\bar{D}^0)$ and D^{\pm} [1]. Since then, a few experiments have measured the cross section of $e^+e^- \to \psi(3770) \to \text{hadrons}$ where $\psi(3770)$ is the lightest charmonium resonance state, lying above the $D\bar{D}$ threshold, and so should predominantly decay into $D\bar{D}$ pair, analogous to the case of $\Upsilon(4S) \to B\bar{B}$. As it is apparent, for instance, by looking at a summary table given in Table 2 of [2] which also gives average of the four measurements on $\sigma(\psi(3770) \to \text{hadrons})$ to be (7.9 ± 0.6) nb, there has been a debate on whether there is a relatively large production rate of non- $D\bar{D}$ decays of $\psi(3770)$.

With the advent of the CLEO-c phase of CLEO's program, this old puzzle is being readdressed. CLEO has already published the measurement of cross section of $D\bar{D}$ [3]. I would like to report a new result from CLEO on the measurement of the cross section for $\sigma(e^+e^- \to \psi(3770) \to \text{hadrons using } 281 \text{ pb}^{-1}$ of the CLEO-c data along with other results on observations and searches for non- $D\bar{D}$ decays of $\psi(3770)$ done by the same detector.

2. SEARCHING FOR NON- $D\bar{D}$ DECAYS OF $\psi(3770)$

The best way to look for possible non- $D\bar{D}$ decays of $\psi(3770)$ is probably to look for the known dominant decay modes of $\psi(2S)$ such as $\psi(2S) \to \gamma \chi_{cJ}$, $\psi(2S) \to \pi \pi J/\psi$.

CLEO has measured $\sigma(e^+e^- \to \psi(3770)) \times \mathcal{B}(\psi(3770) \to \gamma \chi_{c1})$ to be $(20.4 \pm 3.7 \pm 2.4)$ pb while their radiative transitions to χ_{c0} and χ_{c2} states were statistically insignificant, hence set upper limits [4]. We also have measured $\sigma(e^+e^- \to \psi(3770) \times \mathcal{B}(\psi(3770) \to XJ/\psi)$ where X being $\pi^+\pi^-$, $\pi^0\pi^0$, η , and π^0 (the signal of π^0 mode was not significant) [5].

Furthermore, we searched for two- and multi-body decays of $\psi(3770)$. In the search of two-body decays (vector-pseudoscalar), we looked for productions of $\rho^0\pi^0$, $\rho^+\pi^-$, $\omega\pi^0$, $\phi\pi^0$, $\rho\eta$, $\rho\eta'$, $\omega\eta'$, $\phi\eta'$, and $K^{*0}\bar{K}^0$ as well as $b_1\pi$ ($b_1^0\pi^-$ and $b_1^+\pi^-$) from $\psi(3770)$ decays [6]. A statistically significant signal was found only in the $\phi\eta$ mode (2.4 ± 0.6) pb. In multibody searches, we looked for productions of combinations of

TABLE 1. Results of observations and searches of non- $D\bar{D}$ decays for $\psi(3770)$ All upper limits are set at 90% confidence level.

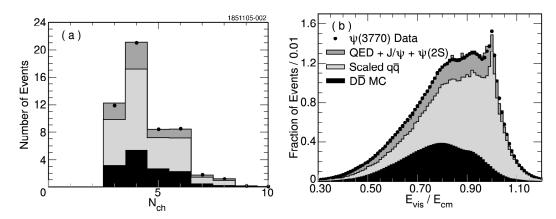
X	$\sigma(\psi(3770) \to X) \text{ (pb)}$
γχc2	< 10.8
$\gamma \chi_{c1}$	$20.4 \pm 3.7 \pm 2.4$
γχε0	< 295
$\pi^+\pi^-J/\psi$	$12.1 \pm 1.8 \pm 1.2$
$\pi^0\pi^0J/\psi$	$5.1 \pm 2.0 \pm 1.0$
$\eta J/\psi \ \pi^0 J/\psi$	$5.5 \pm 2.1 \pm 1.4$ < 1.8
	<u> </u>
two- (VP) and multi-body	< 240
$K^0_S K^0_L$	< 0.07

 π , K, p, η , ω , and ϕ , considered 25 different final states, with and without strangeness and/or baryons [7]. None of them yielded statistically significant signals. We also looked for $\psi(3770) \to K_S^0 K_L^0$ [8] which was motivated the signal seen in the decay of $\psi(2S)$ [9]. Table 1 summarizes results of these observations and searches for non- $D\bar{D}$ decays of $\psi(3770)$.

3. MEASUREMENT OF $\sigma(e^+e^- \rightarrow \psi(3770) \rightarrow \text{hadrons})$

Table 1 suggests that $\sigma(\psi(3770) \to \text{non-}D\bar{D})$ is much less than 1 nb. In this section we present a measurement of the cross section for $e^+e^- \to \psi(3770) \to \text{hadrons}$, $\sigma_{\psi(3770)}$, at $E_{cm}=3773$ MeV, where $\psi(3770)$ refers to the yield at $E_{cm}=3773$ MeV from $c\bar{c}$ annihilation into hadrons, not including continuum production of $q\bar{q}$ (q=u,d,s) and not including radiative returns to $\psi(2S)$ and to J/ψ .

We define $\sigma_{\psi(3770)}$ as


$$\sigma_{\psi(3770)} = \frac{N_{\psi(3770)}}{\varepsilon_{\psi(3770)} \cdot \mathcal{L}_{\psi(3770)}},\tag{1}$$

where $\mathcal{L}_{\psi(3770)}$ is the integrated luminosity for the data taken at $E_{cm}=3773$ MeV $(281.3\pm2.8~{\rm pb}^{-1})$, $N_{\psi(3770)}$ is the observed number of hadronic events inferred to be directly from $\psi(3770)$ decays, and $\varepsilon_{\psi(3770)}$ is the hadronic event selection efficiency of $\psi(3770)$ decays.

Our main observable is the number of hadrons produced in $\psi(3770)$ decays, $N_{\psi(3770)}$. At $E_{\rm cm} \sim 3773$ MeV, the main backgrounds come from continuum production $e^+e^- \to q\bar{q}$ and radiative returns to $\psi(2S)$ and J/ψ . Thus $N_{\psi(3770)}$ can be given by

$$N_{\psi(3770)} = N_{\text{on-}\psi(3770)} - N_{q^{-}q} - N_{\psi(2S)} - N_{J/\psi} - \Sigma_{l=\tau,\mu,e} N_{\ell^{+}\ell^{-}},$$
 (2)

where $N_{\text{on-}\psi(3770)}$ is the observed number of hadronic events in the $\psi(3770)$ data taken at $E_{\text{cm}}=3773$ MeV, $N_{q\bar{q}}$ is the number of observed hadronic events from $e^+e^- \rightarrow$

FIGURE 1. N_{ch} (a:left) and E_{vis}/E_{cm} (b:right) of our $\psi(3770)$ sample that pass our hadronic event selection criteria (black-solid histograms). Backgrounds are also overlaid (generic $D\bar{D}$ Monte Carlo, scaled continuum ($q\bar{q}$) data, summed QED events ($\Sigma_{l=e,\mu,\tau}(e^+e^-\to \ell^+\ell^-)$) plus radiative returns to $\psi(2S)$ and J/ψ). The yield of $D\bar{D}$ Monte Carlo is scaled to the same size of the data assuming $\sigma(e^+e^-\to D\bar{D}\to hadrons)=6.4$ nb.

 $\gamma^* \to q \bar{q}$, $N_{\psi(2S)}$ and $N_{J/\psi}$ are the number of hadronic events from $\psi(2S)$ and J/ψ decays respectively, and $N_{\ell^+\ell^-}$ is the number of events from $e^+e^- \to \ell^+\ell^-$ that pass our hadronic event selection criteria. We subtract these backgrounds by employing scaled numbers of hadrons observed in two other data samples, taken at the $\psi(2S)$ peak ($E_{cm}=3686$ MeV) and at the continuum below this resonance ($E_{cm}=3671$ MeV). Figure 1 shows the distributions of two of the important variables in our hadronic event selection criteria, track multiplicity (N_{ch} :left) and visible energy (charged and neutral) normalized to E_{cm} (E_{vis}/E_{cm} :right), of our $\psi(3770)$ data sample that pass our hadronic event selection criteria (black-solid histograms). Also overlaid are various estimated and observed backgrounds. Notice that there is not much room between the black-solid histogram (data) and the total background.

The final cross section is $\sigma_{\psi(3770)} = (6.38 \pm 0.08^{+0.41}_{-0.30})$ nb. The difference between $\sigma_{\psi(3770) \to D\bar{D}}$ [3] and $\sigma_{\psi(3770)}$ is $(-0.01 \pm 0.08^{+0.41}_{-0.30})$ nb.

REFERENCES

- 1. I. Peruzzi et al. (Lead-Glass Wall Collaboration), Phys. Rev. Lett. 39, 1301 (1977).
- 2. J. Rosner, hep-ph/0411003.
- 3. Q. He *et al.* (CLEO Collaboration), Phys. Rev. Lett. **95**, 121801 (2005).
- 4. T.E. Coan et al. (CLEO Collaboration), hep-ex/0509030 (submitted to Phys. Rev. Lett.).
- 5. N.E. Adams et al. (CLEO Collaboration), hep-ex/0508023 (submitted to Phys. Rev. Lett.).
- 6. G. Adams *et al.* (CLEO Collaboration), hep-ex/0509011 (submitted to Phys. Rev. Lett.).
- 7. G. S. Huang *et al.* (CLEO Collaboration), hep-ex/0509046 (submitted to Phys. Rev. Lett.).
- 8. D. Cronin-Hennessy et al. (CLEO Collaboration), (in preparation to submit to Phys. Rev. Lett.).
- 9. S. Dobbs *et al.* (CLEO Collaboration), (in preparation to submit to Phys. Rev. Lett.).